Compiling a diverse web corpus for South Tyrolean German - STirWaC

Sarah Schulz, Verena Lyding, Lionel Nicolas

sarah.schulz@ugent.be
LT^{3}, Language and Translation Technology Team Ghent University
\{verena.lyding;lionel.nicolas\}@eurac.edu
Institute for Specialised Communication and Multilingualism European Academy of Bolzano

July 22, 2013
EURAC
research

Outline

(1) State of the art
(2) Overview of the method
(3) Harvesting
(4) Crawling
(5) Patching
(6) Evaluation
(7) Conclusion and future work
(8) References

State of the art

Web-based corpora

- large web-based corpora for national varieties of several languages available (cp. eg. Roth (2012), Baroni et al. (2009), Cook and Hirst (2012))
- BooTCaT by Baroni and Bernardini (2004) tool which facilitates the compilation of web-based corpora
- corpus building for minority languages - web crawling software by Scannell (2007)

Problems of state-of-the art approaches

Quantity, quality and restriction

State-of-the-art approaches assume 2 main criteria...

- ... a certain variety has its own top-level domain
- ... a domain contains enough content to build a large corpus
But a lot of small varieties do not meet these criteria.

Our main contributions

Compiling web-based corpora for smaller varieties

In the following we ...

- ... explain a procedure for web-based corpora of language varieties that are not restricted to one single-top level domain and face data sparsity (example: STirWaC: corpus of South Tyrolean German).
- introduce a procedure for improving the balance of the corpus in terms of the diversity of texts
- ... describe and evaluate the resulting STirWaC, the largest ever-built web-corpus for South
Tyrolean German

Overview of the method

restriction

harvest a base corpus

quantity

crawling a larger corpus
quality
expanding the coverage over less represented text types

Overview of the method

Figure: Work flow

Overview of the method

Figure: Work flow: Harvesting

	Corpus	1.1a	I.1b	1.1	1.2	I
	Method	Harvesting	Harvesting	$1.1 \mathrm{a} \cap \mathrm{l} .1 \mathrm{~b}$	Harvesting	$1.1 \cap 1.2$
	Domains	.it	$\neg\{. \mathrm{de}$ \}	-	all	-
	Seeds	100 terms	42 terms	-	1,000 terms	-
	Search Tuples	500 of length 3	500 of length 2	-	5,000 of length 2	-
	Max Results/Query	50	50	-	30	-
	Upper Limit	25,000	25,000	15,060	150,000	40,588
	Unique URLs	15,572	10,420	14,930	103,896	39,813
Results	DeDuper-ed Docs	11,070	3,990	14,869	25,719	39,502
Results	Tokens	9,658,731	4,108,360	13,442,536	39,405,480	50,734,333
	Lemmas	109,200	70,255	123,255	196,479	210,657

Table: Summary of corpus I.

Overview of the method

Figure: Work flow: Harvesting

	Corpus	1.1a	I.1b	1.1	1.2	I
	Method	Harvesting	Harvesting	$1.1 \mathrm{a} \cap \mathrm{l} .1 \mathrm{~b}$	Harvesting	$1.1 \cap 1.2$
	Domains	.it	$\neg\{. \mathrm{de}$ \}	-	all	-
	Seeds	100 terms	42 terms	-	1,000 terms	-
	Search Tuples	500 of length 3	500 of length 2	-	5,000 of length 2	-
	Max Results/Query	50	50	-	30	-
	Upper Limit	25,000	25,000	15,060	150,000	40,588
	Unique URLs	15,572	10,420	14,930	103,896	39,813
Results	DeDuper-ed Docs	11,070	3,990	14,869	25,719	39,502
Results	Tokens	9,658,731	4,108,360	13,442,536	39,405,480	50,734,333
	Lemmas	109,200	70,255	123,255	196,479	210,657

Table: Summary of corpus I.

Distribution of top-level domains

Domain Corpus	$I .1 a$	$I .1 b$	$I .1$	$I .2$	I
.it	$11,070(100.0 \%)$	$1,256(31.48 \%)$	$12,149(81.71 \%)$	$3,551(13.81 \%)$	$15,099(38.22 \%)$
. de	-	-	-	$10,544(41.00 \%)$	$10,544(26.70 \%)$
.at	-	$373(9.35 \%)$	$373 \quad(2.51 \%)$	$2,779(10.81 \%)$	$3,090(7.82 \%)$
.ch	-	$126 \quad(3.16 \%)$	$125(0.84 \%)$	$989 \quad(3.85 \%)$	$1,102(2.79 \%)$
other	-	$2,235(56.02 \%)$	$2,222(14.94 \%)$	$7,856(30.55 \%)$	$9,667(24.47 \%)$
total	11,070	3,990	14,869	25,719	39,502

Table: Distribution of top-level domains of harvested corpora

Overview of the method

Figure: Work flow: Crawling

Distribution of top-level domains

Corpus Domain	1	II. 1	11.2	I/	STirWaC
.it	15,099 (38.22\%)	30,573 (66.63\%)	4,027 (17.26\%)	32,759 (51.25\%)	36,561 (42.15\%)
.de	10,544 (26.70\%)	723 (1.58\%)	537 (2.30\%)	1,171 (1.83\%)	11,668 (13.45\%)
.at	3,090 (7.82\%)	116 (0.25\%)	145 (0.62\%)	215 (0.34\%)	3,283 (3.78\%)
.ch	1,102 (2.79\%)	75 (0.16\%)	30 (0.13\%)	104 (0.16\%)	1,204 (1.39\%)
other	9,667 (24.47\%)	14,401 (31.38\%)	18,597 (79.69\%)	29,674 (46.42\%)	34,033 (39.23\%)
total	39,502	45,888	23,336	63,923	86,749

Table: Distribution of top-level domains.

Summery of all corpora

	Corpus	I	II. 1	II. 2	II	STirWaC
	Method	Harvesting	Crawling	Crawling	II. $1 \cap \mathrm{II} .2$	$1 \cap \mathrm{II}$
Setup	Domains	-	I.1			
	$1.2^{1} \backslash\{. \mathrm{de}, . \mathrm{at}, . \mathrm{ch}\}$	-	-			
	Seeds	-	14,245 ${ }^{2}$ URLs	4,625 URLs	-	-
	Search Tuples	-	-	-	-	-
	Max Results/Query	-	-	-	-	-
	Upper Limit	40,588	-	-	69,224	103,425
Results	Unique URLs	39,813	135,285	65,554	64,892	88,651
	DeDuper-ed Docs	39,502	45,888	23,336	63,923	86,749
	Tokens	50,734,333	29,777,384	22,170,902	47,869,771	82,262,840
	Lemmas	210,657	160,035	157,264	195,981	237,623

Table: Summary of the corpus.
${ }^{1}$ From these URLs only the single shortest URL per site was kept.
${ }^{2}$ This should be 14,371 but our exclusion pattern was a tad too generous.

Overview of the method

Figure: Work flow: Patching

Patching to increase diversity

Assessing corpus diversity and text types

- patching the STirWaC corpus with documents not reached by standard BootCaT harvest and crawling.
- reach a better balancedness in terms of text type
- text type: texts that have a high similarity to each other with respect to a bunch of features

Patching to increase diversity

Basic idea

a specialized seed term list, specific to subcorpora of certain text types, can be used to detect and exploit previously missed parts of the Internet.

Tasks to tackle

- group the text into subcorpora as basis for seed term extraction \rightarrow left to future work
- classify our documents according to text features
- verify that seed term list compiled from grouped subcorpora enables us to retrieve documents from the same text type

Patching to increase diversity

Underlying approach

- method developed by Forsyth and Sharoff (2013)
- manually evaluated text set on several linguistic aspects
- attributes of texts used as coordinates of a vector
- attribute vectors are reduced to two and mapped on a 2D map
- plot STirWaC with the help of trained tool for standard German

Plotting texts on a 2D space with regard to their text features

Pentaglossal Corpus texts in 2D coordinate space.

Figure: The pentaglossal corpus collected by Forsyth and Sharoff (2013) plotted on a 2D similarity space.

Plotting STirWaC

STirWaC

Filling the gap

STirWaC \& Dolomiten

Patching to increase diversity

Evaluation

collocation/term	Typical of	$\mathbf{r f}_{a t}$	$\mathbf{r f}_{c h}$	$\mathbf{r f}_{d e}$	$\mathbf{r f}_{s t}$
wilder Knoblauch	$A T D E$	1.8	1.0	1.3	$\mathbf{4 . 9}$
Blaulicht und Sirene	$C H D E$	2.2	$\mathbf{5 . 9}$	3.7	2.4
Blaulicht und Folgetonhorn	$A T$	$\mathbf{4 . 0}$	0	0	0
Blaulicht und Martinshorn	$D E$	1.8	1.5	$\mathbf{8 . 7}$	0
in angetrunkenem Zustand	$C H D E$	0.7	$\mathbf{5 5 . 4}$	2.0	37.7
Einspruch einlegen	$D E$	23.0	34.8	$\mathbf{9 0 . 8}$	35.3
große Töne spucken	$D E$	$\mathbf{1 2 . 1}$	9.8	11.8	0
Baukonzession	STIR	1.5	1.5	4.0	$\mathbf{3 0 5 . 1}$
Handelsoberschule	STIR	0.4	0	0	$\mathbf{1 8 1 . 1}$
Regionalrat	STIR	7.3	11.8	8.7	$\mathbf{4 9 4 . 8}$
innerhalb <date>	STIR	0	0	0.3	$\mathbf{1 7 5 . 0}$
halbmittag	STIR	0.4	0	0	$\mathbf{2 5 . 5}$
weißer Stimmzettel	STIR	0	0	0	$\mathbf{6 . 1}$

Table: Relative frequencies of characteristic n-grams over $S T i r W a C\left(r_{s t}\right)$ and three other corpora covering documents in Austrian German ($\mathbf{r f}_{a t}$), Swiss German ($\left(\mathbf{f}_{c h}\right)$ and the standard German ($\mathbf{r f}_{d e}$) Roth (2012)

Conclusion

Conclusion

- we have built the largest South Tyrolean web corpus currently available
- corpus highly relevant for South Tyrolean German
- presented a blueprint approach for the compilation of specialized corpora of other language varieties
- introduced a new approach towards the extension of web corpora considering text type

Future work

- improve size and representativeness of STirWaC
- fully implement the grouping approach of subcorpora with respect to text type

Literature I

Baroni, M. and Bernardini, S. (2004). Bootcat: Bootstrapping corpora and terms from the web. In LREC. European Language Resources Association.
Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta, E. (2009). The wacky wide web: a collection of very large linguistically processed web-crawled corpora. Language Resources and Evaluation, 43(3):209-226.

Literature II

Cook, P. and Hirst, G. (2012). Do web corpora from top-level domains represent national varieties of english? In Proceedings, 11th International Conference on Statistical Analysis of Textual Data / 11es Journées internationales d'Analyse statistique des Données Textuelles (JADT 2012), pages 281-291, Liège.
Forsyth, R. S. and Sharoff, S. (2013). Document dissimilarity within and across languages: A benchmarking study. Literary and Linguistic Computing.

Literature III

Roth, T. (2012). Using web corpora for the recognition of regional variation in standard german collocations. In Proceedings of the seventh Web as Corpus Workshop (WAC7). Adam Kilgarriff and Serge Sharoff.
Scannell, K. P. (2007). The crbadn project: Corpus building for under-resourced languages.

